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The propensity of cyclopropane to stabilize remote incipient carbocationic centers has 

been dmmstrated in the solvolyses of gecmetrically constrained substrates'. In contrast, cy- 

clopropane-cation interaction (kAcc H 3 5) is weak cmpared to nucleophilic solvent assistance 

in the parent 2-cyclopropylethyl Ethanolysis and acetolysis of 2-cyclopropylethyl 

brosylate and the sterically related isoamyl brosylate3 were found to be mechanistically simi- 

lar, both reacting via predcminan - t nucleophilic solvent assistance (ks). Only in formic acid was 
2-4 

evidence for interaction observed in the formation of rearranged product, cyclopantyl formate. 

To gain further information on the ability of cyclopropsne to function as a remote neigh- 

boring group in conformationally mbile systems, solvolyses of 2-cyclopropylethyl tosylate (1, 

and isoamyl tosylate (2)4'5 have been studied in urea-buffered, anhydrous 2,2,2-trifluoroethan- 

01 KU%), a madim of exceptional ability in prcmting anchimeric assistance6. Hate constants, 

obtainedusing a spectiophotcmatricmathcd', and activation parameters are listed in Table I; 

solvolysis products are shm in the schems belaw and Table 2. 

Table 1: Trifluoroethanolvsis First Order Pate Constantsa 

T C°C, 
l-cm - 

kxlo5(sec-1) 
2-ars 

w(lo5&!c-1) 

110.02 1.30 + 0.18 0.425 + 0.012 
120.01 2.88 + 0.17 1.04 + 0.13 
130.01 
75.00b 

5.51 + 0.15 1.96 + 0.11 
0.0694 0.0204 

~FWX constants are averages of 2-3 runs; [HO-!%.] = 0.9083 - 1.146 mM; 
[urea] = 1.000 - 1.319 mM; for I-UIs, Ad = 21.52 2 1.10 kcal/mle, 
AS+ = -25.20 ? 2.80 eu; for 2-O%, AH+ = 22.73 + 2.59 kcal/mle, 
cSf = -24.16 + 6.60 eu. bex~apolated. 

Trifluorcethanolysis of the analogous l,l-dideuterated derivative (1_ars-l-d2)5 gave I- 

OWE-2-d2 and 4-OIFE-2-d2 with the deuterium exclusively at the l-position of l+Yl?FH and in the - 

methylgroupof+YIFE,whereas thedeuteriumlabelin~-OIFEwas apparently scra&led'. (See 

reaction scheme.) Deuteriumdistribution inthe twoolefinicethers 5-OIFE-d2 and6-oTFE-d2was - 

not ascertained. Structuralassigmentsweremde on the basis of chemical and spectroscopic 
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evidence. Ueuterium content and distribution were determined by nmr spectroscopy usjng aceto- 

phenone as an internal area standard. Products~+XFEand~-OTFEwm shown to be stable under 

solvolysis conditions. 

Table 2: Trifluoroethanolysis Products of l_oTs at 130° (ble Percent Product) 

Equiv. Urea t1/2 l-mFE 3-mFz I-cmE 5GJxE -- -- 
3.31 2.0 41 25 32 2.2 
3.36 6.9 46 27 25 2.1 
1.42 6.9 46 29 14 6.6 
1.20 6.9 48 31 7.2 7.5 

6-OITE 
--- 
4.9 
4.9 
6.7 

As shown in Table 2, prcduct distribution for l-O& is dependent on base concentration 

rather than reaction time. Thus, a small fraction of the olefinic ethers may be formed fran 

A-CYTEE at lower base concentrations. The corresponding formate, +XZHO, deccqoses in formic 

acid (a more acidic medim than TFE) to ~-CCH02. The two olefinic ethers may be formed fran 

methylcyclopropylcarbinyrbinyl cations as shown in the scheme below. The activation enthalpy for 

1-Ors is cmparable to that of 2-phenylethyl tosylate IO and slightly lmer than that for the 

steric analogue Z-UTs, indicating sane degree of participation. The large negative entropy of 

activation is camonly observed in TF‘!?. 

The trifluoroethanolysis rate ratio at 75O, k /k 
12 

= 3.4 (3.1 at IlOO), although mall, is 

significantly enhanced over those for ethanolysis (0.92), acetolysis (0.97), and formlysis 

(l.1)3 (T = 75O). This rate enhancement, although small ccqared to the rate increments ob- 

served in certain rigid polycyclic systems', is nonetheless connotative of anchimeric assis- 

tance. tire convincing evidence for this assertion was furnished by product studies. The rela- 

tive yields of cyclopentyl prcducts increase frun 0% 2,3 in the highly nucleophilic acetic acid 

to 13-20%3'4 and 25-31% in the more limiting solvents formic acid and TF‘E, respectively. Since 

any cyclopentyl products must arise via cyclopropyl participation (k C*3H5) the cyclopen~l - a 

yield reflects the increasing ability of cyclopropane to assist with decreasing solvent nucleo- 

philicity and increasing solvent ionizing peer since the increase in cyclopentyl products is 

accanpanied by a decrease in the 2-cyclopropylethyl product (i.e. 100% in acetic acid 2,3 , 

70-82% in formic acid 3,4 , and 41-48% in TF'E). A similar incremnt in hydrogen participation 

(k,U) is indicated by formation of hydrogen migration products (i.e. 0% in acetic acid 2,3 , 

5.1-11% in formic acid 3,4 , and 27-34% in TFE). 

A nwchanistic rationale depicting these discrete processes is presented below. Three Con- 

petingmchanisticp&hs areproposed. Formationof themajorproduct~-OTFSmayoccurpredan- 

inantlybyak,mchanismtypicalof simple primry substrates. This is supportedby the lack 
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of rearrangement (a forml1,2-cyclopropylshift, observed tobe dcminantin cyclopropyl 

substituted neopentyl systems") that otherwise would scramble deuterium frcm C-l to C-2. Sec- 

coldly, interaction of cyclopropane with the developing electron deficient center may give a 

bridged intermediate 1, best represented as an intramlecularly comer-alkylated cyclopropane, 

analogous to cornerprotonationof cyclopropaneas postulatedbyothers 12 .l%ismaybe attacked 

by solvent to give sam fraction of _l=rYIFE" or itmyundergo rearrangemnttothemre stable 

cyclopentyl carbenium ion. The latter is sufficiently long lived to scramble the deuterium 

label before being trapPea by 'FE. Rapid 1,2-hydride shifts in the cyclopentyl cation are known 

frun low 

may give 

The 

,llsis 

poneuts, 

temperature nmr work by 01ah14 . Thirdly, au irreversible 1,2-hydride shift + kAH 

amethylcyclopropylcarbinylcation, the chemistqofwhichhasbeendescribed 2,15 . 

effectiveness of cyclopropane to anchimerically assist in the trifluorcethanolysis of 

more clearly seen upon dissection of the observed rate constant (kobs ) into its ccxn- 
. 

provided that attack by solvent or any internal nucleophile (hydrogen, cyclopropane) 

is concerted with ionization. The general equation kobs = ks + k 16 
A 

maybeeqendedas 

k 
obs 

= ks + kAC-C3H5 + k H A (symbolsdefinedabme). 

Noting that the magnitude of ks should be appr oximatelythesan~inboth?yoTsand~-CYIs 

(which has ks = 2X10-5sec-' ) the following values for 1-UT.s may be derived at 130°:(X105 set) 

ks = 2.28, kAc-c3H5 = 1.37 and k H = 1.86. In this mdim k c-c H 3 5 
A A 

is a caqxatitivenechanism 

contrary to previous conclusions drawn for solvolyses in other media 2'3. Furthermore, kAH is 

also highly caqetitive (unlike in ~-OI.s, which has no cyclopropylcarbinyl driving force) 

elevating the overall kA for L-VI's to 3.23 as canpared to 2.28 for k,. 
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